app增长黑客(增长黑客工具)

hacker|
118

ABtest 基本原理与框架一

无法衡量就无法优化,对于互联网产品而言,不仅是推荐系统,整个 app 系统的更新迭代必然需要建立一套度量衡,来把控整个流程优化的方向。而 abtest 系统就是一个很好的进行变量控制和优化方向选取的工具,循环:衡量-发现-迭代-验证。所谓精细化迭代是一种建立在数据基础上的思维方式——用较少的成本获得较好的效果。无数据,不优化, 线上分流实验是进行推荐算法优化的必由之路。并且 abtest 不仅是推荐迭代的利器,他还可服务于所有需要逐步完善的产品迭代。有人说为什么需要 abtest ,为什么不能够前后进行实验比较;因为同时期测试的 abtest 非常有必要的原因是不同时间的测试无法说明 b 比 a 好,通常时间也是一个变量,比如电商的双十一等。

在网络分析中,A / B 测试(桶测试或分流测试)是一个随机实验,通常有两个变体,A 和 B 。利用控制变量法保持有单一变量的前提下,将 A 、B 数据进行对比,得出实验结论。AB 是一种科学的利用数据证明方案可行性的手段,一般在网站中广泛使用。通过 abtest 系统对迭代方案进行实验, 并结合数据进行分析,反向再验证和驱动方案,是一个发现问题、提出假设、印证猜想、不断优化的过程。合适的推荐方法是要经过不断的实验去验证,验证的过程也是在校验数据,从而优化推荐系统策略,最终提升用户新增和留存。

1. 指标定义

在 abtest 前,我们需要梳理出我们关心的若干指标,并选择某个指标作为北极星指标,如点击率、转化率、浏览时长、gmv 、客单价等,未来讨论的推荐系统的相关优化也将围绕若干个目标进行。也有人将核心的指标成为北极星指标,北极星指标经常在增长黑客中被使用。来自微软 Bing 的例子:Bing 希望优化长期查询份额 ( 市场中的查询百分比 ) 和长期收入。短期内,通过展示更多广告很容易赚钱,但它可能会损害用户体验。所以其实短期和长期指标的定义也很重要,如何通过 abtest 平衡和评估长短期收益。

2. 了解几个事实

不是每个想法都是好的、大部分想法都是不好的;Many times, we have to tell people that their new beautiful baby is actually…ugly 。

根据微软官方发布的上万次 abtest 实验数据来看:

1) 1/3 of ideas were positive ideas and statistically significant

2) 1/3 of ideas were flat:no statistically significant difference

3) 1/3 of ideas were negative and statistically significant

3. 实验管理平台

3.1 实验报告

实验报告需要对脏数据进行过滤,并做一定的效果平滑,效果波动告警。异常值会产生明显的偏差: 足以导致错误的统计结果。例:亚马逊上有围绕 100,000 名用户进行的 abtest 实验,其中 2% 的用户的客单价为 30 美元, 2% 的用户客单价是 1200 美元,有时 ( 很少 ) “用户”购买足以显着扭曲结果。

3.2 分流 分层策略

如果流量不进行分层、分流可能会导致流量饥饿,即实验一在进行中占用了全站的 80% 的流量,实验二就只能使用 20% 的流量。因此良好的分层、分流规则可以充分使用网站的流量。常见的分流策略有:Random – 随机分流,用于可变结果集,Partition By User – 按用户切分 ,同一用户永远看到同样结果,Partition By Category – 按分类切分,针对不同分类测试算法针对性。在分流的上层则会考虑分层,并且在互联网公司中应用广泛。

通常网站会利用分层和分流的机制保证本站的流量高可用,原因有以下几点:

1)网站的流量是有限的

2)实验的对象是多层的或同一层内互不干扰的。多层:例如网站不仅仅有UI层 ( 界面 ) ,通常还有算法层等;同一层内互不干扰:例如网站的推荐位有多个 ( 首页推荐位、商详页推荐位 ) 。

3)AB tests 的需求是大量的

注意点:幂等-均匀化-并行-互斥; 分层实验,促进流量的最大化利用。

规则 1. 正交、互斥

在介绍分层规则之前,先介绍一下正交和互斥的概念。

1)正交,如何理解正交?

例如:我们有 100 个兵乓球,随机拿出来 50 个染成蓝色,50 个染成白色,则我们有蓝色、白色兵乓球各 50 个,现在我们把这 100 个兵乓球重新放在袋子中摇匀,随机拿出 50 个兵乓球,那么这 50 个兵乓球颜色蓝色和白色各 25 。当然举这个例子并不是非常的恰当,因为样本太少了,此处举例只为说明正交的意义。

正交实验:每个独立实验为一层,层与层之间流量是正交的,一份流量穿越每层实验时,都会再次随机打散,且随机效果离散。

2) 互斥,如何理解互斥?

例如:我们有 100 个兵乓球,每 25 个为一组,分别染成蓝、白、橘、绿。若 X 实验拿的是蓝色、白色则 Y 实验只能拿橘色和绿色,我们说 X 实验的和 Y 实验是互斥的。

互斥实验:实验在同一层拆分流量,且不论如何拆分,不同组的流量是不重叠的。

其中,分流及分层实验设计基于 Goolge 论文:

Overlapping Experiment Infrastructure : More, Better, Faster Experimentation

流量从上往下流过分流模型:

1)规则详述:

域 1 和域 2 拆分流量,此时域 1 和域 2 是互斥的。

流量流过域 2 中的 B1 层、B2 层、B3 层时,B1 层、B2 层、B3 层的流量都是与域 2 的流量相等。此时 B1 层、B2 层、B3 层的流量是正交的。

扩展:流量流过域 2 中的 B1 层时,又把 B1 层分为了 B1-1 ,B1-2 ,B1-3 ,此时 B1-1 ,B1-2 ,B1-3 之间又是互斥的。

根据以上规则我们可以不断的在此模型中增加域、层,并且可以互相嵌套。这要与实际的业务相匹配,拆分过多的结构可能会把简单的业务复杂化,拆分过少的结构又可能不满足实际业务。

2)使用场景

例1:B1 层、B2 层、B3 层可能分别为:UI 层、搜索结果层、广告结果层,这几层基本上是没有任何的业务关联度的,即使共用相同的流量 ( 流量正交 ) 也不会对实际的业务造成结果。但是如果不同层之间所进行的试验互相关联,如 B1 层是修改的一个页面的按钮文字颜色,B2 层是修改的按钮的颜色,当按钮文字颜色和按钮颜色一样时,该按钮已经是不可用的了。因此建议同一类型的实验在同一层内进行,并且需要考虑到不同实验互相的依赖。

例2:域 1 的此种分流的意义在于,当我们做一个实验,并且希望其他任何实验都不能对我实验进行干扰,保证最后实验的可信度。

3.3 AA/AB 测试要点

1)候选策略+预测模型作为最小的考察单元

2)通过规则配置 ABtest:配置流量切分,候选策略及预测模型

3)重视抽样误差

4)关注时间周期效应

3.4 流程

1)随机分组 ( ABCDE… ) :A - 控制组,与线上一致;B - 测试组;C ...

2)收集相关数据 ( 对决策有用的数据 )

3)数据分析,必须通过假设检验来确定差异不是来自于偶然,通过因果关系证明变化由测试桶的变化带来。

4. abtest 的那些技术

4.1 为什么灵敏度 ( p-value ) 很重要

p-value 即概率,反映某一事件发生的可能性大小,主要在 abest 中说明实验的提升的显著性,并且往往与假设检验相挂钩。统计学根据显著性检验方法所得到的 P 值,一般以 P 0.05 为有统计学差异, P0.01 为有显著统计学差异,P0.001 为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 0.05 、0.01 、0.001 。实际上,P 值不能赋予数据任何重要性,只能说明某事件发生的几率。在实践中建议,运行 A / A 测试,并同时也关注相关指标及 p-value 。A / A 测试中度量的 P-value 分布应该是统一的,进行 1,000 次 A / A 测试,并检查分布是否均匀,当我们得到异常信息时,则需要纠正一些事情。

4.2 假设检验

假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。统计上对参数的假设,就是对一个或多个参数的论述。而其中欲检验其正确性的为零假设 ( null hypothesis ) ,零假设通常由研究者决定,反映研究者对未知参数的看法。相对于零假设的其他有关参数之论述是备择假设 ( alternative hypothesis ),它通常反映了执行检定的研究者对参数可能数值的另一种 ( 对立的 ) 看法 ( 换句话说,备择假设通常才是研究者最想知道的 ) 。

常见假设检验的种类包括:t 检验,Z 检验,卡方检验,F 检验等等。

4.3 t-test、z-test、p-value、ci ( confidence interval )

1)T检验,亦称 student t 检验 ( Student's t test ) ,主要用于样本含量较小 ( 例如 n30 ) ,总体标准差 σ 未知的正态分布数据。T 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

适用条件:已知一个总体均数;可得到一个样本均数及该样本标准误;样本来自正态或近似正态总体。

T 的公式:

            T=(T-μ)/S/n的平方根

若 T 值大于临界值,则拒绝原假设,否则不拒绝。

2)Z 检验是一般用于大样本 ( 即样本容量大于 30 ) 平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数平均数的差异是否显著。当已知标准差时,验证一组数的均值是否与某一期望值相等时,用 Z 检验。

Z 检验的步骤 适用条件:已知一个总体均数;可得到一个样本均数及该样本标准误;样本来自正态或近似正态总体。

第一步:建立虚无假设,即先假定两个平均数之间没有显著差异,

第二步:计算统计量 Z 值,对于不同类型的问题选用不同的统计量计算方法.

如果检验一个样本平均数 ( x ) 与一个已知的总体平均数 ( μ0 ) 的差异是否显著。其 Z 值计算公式为:

            Z=(X-μ)/S/n的平方根

若 Z 值大于临界值,则认为为二者有差异,否则认为没差异。

注:事实上由于总体参数标准差未知,因此一般使用 T 检验。

3)p-value ,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果 p-value 很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,p-value 越小,我们拒绝原假设的理由越充分。p-value 代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取 5% 的显著性水平,如果 p-value 大于 5% ,就接受原假设,否则不接受原假设。这样不用计算 t 值,不用查表。p-value 能直接跟显著性水平比较;而 t 值想要跟显著性水平比较,就得换算成 p-value ,或者将显著性水平换算成 t 值。在相同自由度下,查 t 表所得t统计量值越大,其尾端概率 p 越小,两者是此消彼长的关系,但不是直线型负相关。

原文来自 :;mid=2247487857idx=1sn=c20fb1564775851205936de162b184cfchksm=a692629c91e5eb8a75738250e77d99d01617317727ba4a69d089fa7c0326857f62d849d29b13mpshare=1srcid=1111JsBtvs15AGzNt7AXQWAXsharer_sharetime=1605067338008sharer_shareid=52006a0d19edf83d2b8be98f4d8fe935scene=2subscene=2clicktime=1609155182enterid=1609155182ascene=2devicetype=android-28version=3.1.0.3004nettype=3gnetabtest_cookie=AAACAA%3D%3Dlang=zh_CNexportkey=A626aGN2xum%2F6aauwzSOnHI%3Dpass_ticket=vPmu71dSgh0Cxqe85ss3vXTyn4Dv3EhDOQs27%2F%2FmGhEQEuZmxcRa0n%2B%2BVmZeV%2F1Qwx_header=1platform=win

私域流量是什么意思?

2019年的互联网,“私域流量”这个词突然爆火,突然之间,运营人员都提起了“私域流量”。其风头压过了之前的“增长黑客”、“裂变分销”、“流量池”等词汇。但是依旧有很多的朋友不理解,什么是私域流量呢?

什么是私域流量?

所谓私域流量,指的是个人拥有完全的支配权的账号所沉淀的粉丝、客户、流量,可以直接触达的,多次利用的流量。比如说QQ号、微信号、社群上的粉丝或者顾客,就属于是私域流量。

而与之相对的,就是所谓的公域流量,是指我们不可控的,比如淘宝、抖音、百度、微信都是一个完整的生态,一个巨大的流量池,我们可以通过投放一些广告去获取流量,但是大部分流量都不能为你所用。

至于微信公众号、抖音号、微博号、小红书账号等等,有些人认为是属于公域流量,有些人认为是私域流量。我认为只能算是半私域流量,因为这些流量虽然是沉淀到你的账号里,但是你难以自由的触达,中间还隔着一层。比如说你发布一个产品,你可以在微信、QQ个人号或者在QQ、微信群当中,自由的和任一个成员沟通,收集建议。但是在公众号等等却会被官方规则所限制,不能够自由的触达。

为什么要做私域流量?

2018年以来,互联网的流量增长已经到了瓶颈期,现在获客越来越难,流量越来越贵,而同时各大平台的流量作弊和流量陷阱越来越严重。面临这样的情况,很多企业的增长已经是有心无力,投资回报率越来越低,利润空间也越来越小。

比方说,流量是一片大海,客户是鱼,获客的运营人员就是捕鱼人。在以前,捕鱼人很少,而鱼也源源不断的从大洋中进入到大海里。捕鱼人只要到海里捕鱼就好了,但是后来,大洋里的鱼都游到大海里了,大海中的捕鱼人也越来越多了。每次出海捕鱼的成本越来越高,但是能够捕到的鱼越来越少了。这个时候,私域流量就是从大海中挖了一个渠道,将流量导入自己的鱼塘当中,在鱼塘当中养鱼,同时让他们鱼生鱼,我们就可以直接从私有的鱼塘当中捞鱼了。

私域流量有什么好处?

性价比高

从公域流量当中导流量,获取曝光,需要较高的费用,而且这个费用还是不断的上涨。比如竞价排名,从当初几元钱一个热门词到现在几十元一个关键词。费用在升高,效果却在降低。而私域流量的话,例如微信群或者QQ群,可以更轻松的去做活动,获取曝光,同时还是一个做活动很好方便的初始启动量。

方便沟通反馈

例如我们是通过公众号、抖音等积攒的粉丝,但是我们想要和粉丝互动所以获取一些建议的话,双方很难即时的无障碍的沟通。而私域流量不同,我们通过QQ、微信或者社群,都可以自由的进行交流。

便于品牌维护

我们可以通过公众号等等内容输出去塑造企业的、品牌的形象。但是要维护品牌的形象,则更需要用户被感知。私域流量池可以让用户近距离的感受企业服务,让用户有问题可以即时的沟通反馈,有利于企业的品牌传播。

私域流量会是接下来几年企业发展的重点,又一城很重视私域流量和超级会员的结合问题。特别是在未来增长越来越困难,流量越来越紧缺的时候,所以企业要重视这个问题,及早的打造自己的私域流量池。

催收为什么会知道我手机号的另一个亲情号

可能泄露了信息。

这种,有可能是你换了手机号码,却没有换手机,在你手机上面读取到了你的新号码,因为网贷app在你安装app、授权的时候,就可以直接读取你的手机号码。另外,还有可能是根据你之前的通讯录、通话记录,打电话到你的朋友亲人那里,套路问出来你的新号码。因为你提供了运营商服务密码,通话记录是从运营商那读取来的。之前读取的是拿不回来了,但是后来添加上去的就读取不到。

随着互联网应用的普及和人们对互联网的依赖,互联网的安全问题也日益凸显。恶意程序、各类钓鱼和欺诈继续保持高速增长,同时黑客攻击和大规模的个人信息泄露事件频发,与各种网络攻击大幅增长相伴的,是大量网民个人信息的泄露与财产损失的不断增加。根据公开信息,2011年至今,已有11.27亿用户隐私信息被泄露。包括基本信息、设备信息、账户信息、隐私信息、社会关系信息和网络行为信息等。人为倒卖信息、PC电脑感染、网站漏洞、手机漏洞是目前个人信息泄露的四大途径。个人信息泄露危害巨大,除了个人要提高信息保护的意识以外,国家也正在积极推进保护个人信息安全的立法进程。2018年9月11日,中国消费者协会在北京发布了《APP个人信息泄露情况》遇到过个人信息泄露情况的受访者占85.2%。2019年6月,国家互联网信息办公室发布《数据安全管理办法(征求意见稿)》。

有哪些互联网运营方面的书值得推荐

人丑就要多读书

有句话相信你肯定听过——“人丑就要多读书”。你长得丑还是温柔,我是不知道了,我只知道“运营就要多读书”。

为什么运营就要多读书?

毕竟想系统提高运营能力,建议还是站在巨人的肩膀上,也就是读行业大牛用从业经验汇集而成的书最靠谱。

而运营大概分为这几类:

新媒体运营、内容运营、活动运营、社群运营、用户运营、产品运营、商务运营、等等。

无论是哪一类的运营,都需要你了解用户的需求,打造信任,来满足用户,并且得到回报。

讲点最实际的,而你平常揪心的工作问题和苦恼,都能通过读相应的书,或者是课程,一点一点去攻破突围,在书里找到新思路。

同时建议大家参加一些学习团体,报一两个运营课程。一个人闭门造车不一定能成,一群人手拉手前进,一定能走更远。

一、增长黑客

现在的互联网营销已经无法等待一个个客户上门,越来越多的爆发式增长神话现世。公众号也不是几个月之内粉丝破万,老板的要求动辄就是一周破万?

别颤抖,国外早有可行模式用来复制。

增长黑客已经成为时下最热门的互联网商业理论,如何快速引爆产品或账号,这也正式运营工作的一部分。

“如何低成本实现用户的获取、激活、留存以及变现”,你不想知道吗?

二、流量池

在这本书中他整理和归纳出了一套系统方法,结合大家都会关注到的一些案例,深入浅出地为大家介绍、延展。即使你不是互联网从业者,或许你丝毫没有接触过互联网营销,也没有关系,这本书就是一门就是从另外一个视角带你去了解互联网背后的故事。

你可能会发现原来日常关注的一个小小的事件,在这个事件背后却有一长串的逻辑和故事。有数不清的人在运营者你生活中看到和听到讯息。

三、引爆用户增长

第一到第三章,主要说,增长和产品的冷启动。

第四-六章重点讲用户运营,包括不同阶段运营策略、用户成长体系搭建和用户分级分群运营。

最后一章是讲补贴。

比如书中提到案例糯米网在经历了辉煌的增长后还是败北,原因绝不是文案没写好、活动补贴没做好这么简单。作为双边市场,糯米网本质是通过平台,帮助买家和卖家达成交易。而现状是供给端商家太少,用户需求达不到满足,导致用户流失。这才是落败的真正原因。

只有对增长全局的认识,才能理解这样逻辑背景。抠细节只是非常小的一个点,在对的方向上努力才会产生事半功倍的效果。

做运营既要脚踏实地,也要抬头看路。当然其实职场的任何时候都是如此。

四、疯传

这本书主要讲六个原则:社交货币、诱因、情绪、公共性、实用价值、故事。

想疯传要具备这其中一种或多种原则,最好全部具备,如果其中的某一原则弱,那就要其他原则强点来弥补,如果只具备单一原则,那这原则的属性就得足够强。

五、影响力

影响力是一种个人魅力,有的人说几句话,别人就愿意听,有的人长篇大论说了一通,要么听众昏昏欲睡,要么低下嘘声一片。

《影响力》这本书告诉咱们,如果你想让你的顾客或者下属听从你,你必须要仔细观察思考他们最关心什么,在乎什么,了解他们的真正需求,进而用行动和语言帮助他们实现需求。

当你能满足一个人真正的需求的时候,他们就开始听从你的安排做事了,这时候,你的影响力就建立了。

六、定位

本书提出了被称为“有史以来对美国营销影响极大的观念”——定位,改变了人类“满足需求”的旧有营销认识,开创了“胜出竞争”的营销之道。

深入阐述了定位理论和操作方法,有丰富的实战案例解析,不说对公司的定位吧,对个人定位自身,都很有启发性地指导。

七、运营之光

这本书基本上是做运营的人,都必备的一本书,都会读的一本书,作者也是非常的有名。

本书呢,从运营是什么?互联网运营岗位,到与用户互动,它既有面向初入互联网行业的运营从业者们的具体工作方法讲解和建议,又有适合3~5年运营从业者们阅读的一些案例解析、思考方法分享。

八、我在阿里做运营

中国互联网圈子流传的三句话:阿里的运营,腾讯的产品,百度的技术。

这本书是由当初在网上疯转,获得百万点击量的《我在阿里三年的运营经验都在这儿了》的作者写的。书的信息量巨大,作者从自己的实战经验总结出阿里运营策略,不仅是在带你了解阿里的一线运营经验,收获大厂的运营思维,同时也在传授小微企业的运营实战打法,大厂小厂两手抓,全方面呵护你的成长!

九、进化式运营

《进化式运营:从互联网菜鸟到绝顶高手》这本书作者基于自身十年的互联网洞察、实践经验,并融合了信息论、心理学、经济学、管理学、甚至包括生态学、进化论等跨学科跨学业的知识。值得一看。

十、跟小贤学运营

本书从运营职业的历史到运营从业者的职业规划、用户运营、运营推广、内容运营、运营格局、运营者的自我修养阐述了这一新兴职业的各个方面,作者根据自身的职业发展历程将运营由浅入深讲解给咱们。

十一、从零开始做运营

对小白很还是比较友好的,能指导快速建立运营框架。

这本书是作者写给没有运营经验的小白看的基础类科普运营书,2015年写的,内容是作者总结多年的工作经验总结而来里面的案例放在现在来说已经有些过时了,但是对运营体系的框架勾画的很清楚,概念解释详细,运营的工作内容罗列全面,文字通俗易懂,通读本书作者对运营的三个方面进行了讲解,分别是用户运营、活动运营、内容运营,其中对用户以及内容运营做了比较详细的介绍,最后部分做了总结。

什么是用户行为分析?怎么做用户行为分析?

一、什么是用户行为分析?

用户行为可以用5W2H来总结:

Who(谁)、What(做了什么行为)、When(什么时间)、Where(在哪里)、Why(目的是什么)、How(通过什么方式),How much (用了多长时间、花了多少钱)。

用户行为分析就是通过对这些数据进行统计、分析,从中发现用户使用产品的规律,并将这些规律与网站的营销策略、产品功能、运营策略相结合,发现营销、产品和运营中可能存在的问题,解决这些问题就能优化用户体验、实现更精细和精准的运营与营销,让产品获得更好的增长。

二、为什么需要用户行为分析?

在PC互联网时代,网民的年增长率达到50%,随便建个网站就能得到大量流量; 在移动互联网早期,APP也经历了一波流量红利,获取一个客户的成本不到1元; 而近几年随着流量增长的红利消退,竞争越来越激烈,每个领域均有成百上千的同行竞争,获客成本也飙升到难以承受的水平,业务增长越来越慢甚至倒退。

图:互联网行业竞争越来越激烈

在如此高成本、高竞争的环境下,如果企业内部不能利用数据分析做好精细化运营,将产生巨大的资源浪费,势必会让企业的运营成本高涨,缺乏竞争力。 对于互联网平台来说,传统的数据分析主要针对结果类的数据进行分析,而缺乏对产生结果的用户行为过程的分析,因此数据分析的价值相对较局限,这也是为什么近几年很多企业感觉做了充分的数据分析,但却没有太大效果的原因。

通过对用户行为的5W2H进行分析可以掌握用户从哪里来,进行了哪些操作,为什么流失,从哪里流失等等。从而提升提升用户体验,平台的转化率,用精细化运营使企业获得业务增长。

三、如何采集用户行为数据?

用户行为分析如此重要,为什么互联网公司中能做好用户行为分析的凤毛麟角?主要是原因是数据采集不全面和分析模型不完善。

1.如何高效采集用户行为数据

传统的数据分析因为数据精细度不够和分析模型不完善等原因,导致分析过于粗放,分析结果的应用价值低。而我们要想做好分析,首先必须要有丰富的数据,因此要从数据采集说起,传统的用户行为数据采集方法比较低效,例如:我们获取用户的某个行为数据时,需要在相应的按钮、链接、或页面等加入监测代码,才能知道有多少人点击了这个按钮,点击了这个页面。这种方式被称为“埋点”,埋点需要耗费大量的人力,精力,过程繁琐,导致人力物力投入成本过高。

在移动互联网时代,埋点成了更痛苦的一件工作,因为每次埋点后都需要发布到应用商店,苹果应用商店的审核周期又是硬伤,这使得数据获取的时效性更加大打折扣。由于数据分析是业务发展中极其重要的一个环节,即便人力物力成本过高,这项工作仍然无法省掉。

因此,我们也看到国内外有一些优秀的用户行为分析工具,实现了无埋点采集的功能,例如:国外有Mixpanel,国内的数极客在WEB、H5、Android、iOS四端都可以无埋点采集数据。通过无埋点的采集,可以极大的增强数据的完善性和及时性。

2.如何精准采集用户行为数据

有些核心业务数据,我们希望确保100%准确,因此还可以通过后端埋点的方式作为补充,这样既可以体验到无埋点带来的高效便捷,又能保障核心业务数据的精准性。数极客在数据采集方面支持无埋点、前端埋点、后端埋点以及数极客BI导入数据这四种方式的数据整合。

四、如何做好用户行为分析?

首先要明确业务目标,深刻理解业务流程,根据目标,找出需要监测的关键数据节点,做好基础的数据的收集和整理工作,有了足够的数据,还要有科学的模型,才能更有效的支持分析结果。

上一代的用户行为分析工具(更确切的说法应该是:网站统计或APP统计),主要功能还是局限于浏览行为的分析,而没有针对用户的深度交互行为进行分析,因此分析价值相对有限,目前大部份互联网从业人员对用户行为分析的印象还停留在这个阶段。

我认为要做好用户行为分析,应该掌握以下的分析模型:

1.用户行为全程追踪,支持AARRR模型

500 Startups 投资人Dave McClure提出了一套分析不同阶段用户获取的“海盗指标”这套分析模型,在硅谷得到了广泛应用。

AARRR是Acquisition、Activation、Retention、Revenue、Refer这个五个单词的缩写,分别对应用户生命周期中的5个重要环节,首先要基于用户的完整生命周期来做用户行为分析。

1).获取用户

在营销推广中,什么渠道带来的流量最高,渠道的ROI如何?不同广告内容的转化率如何,都是在这一步进行分析的数据。

来源渠道是获客的第一步,通过系统自动识别和自定义渠道相结合,分析每一个来源渠道的留存、转化效果。网站的访问来源,App 的下载渠道,以及各搜索引擎的搜索关键词,通过数据分析平台都可以很方便的进行统计和分析,利用UTM推广参数的多维分析、通过推广渠道、活动名称、展示媒介、广告内容、关键词和着陆页进行交叉分析,可以甄别优质渠道和劣质渠道,精细化追踪,提高渠道 ROI。

通过渠道质量模型,制定相应的获客推广策略:

图:渠道质量模型

以上图形中的所示渠道为示例,渠道质量也会动态的变化。 第一象限,渠道质量又高流量又大,应该继续保持渠道的投放策略和投放力度; 第二象限 渠道的质量比较高但流量比较小。应该加大渠道的投放,并持续关注渠道质量变化; 第三象限 这个象限里渠道质量又差,带来流量又小,应该谨慎调整逐步优化掉这个渠道; 第四象限 渠道质量比较差,但是流量较大,应该分析渠道数据做更精准的投放,提高渠道质量。

2).激活用户

激活用户是实现商业目标最关键的第一步,如果每天有大量用户来使用你的产品,但没有用户和你建立强联系,你就无法进行后续的运营行为。

3).用户留存

如今一款产品要获得成功的关键因素不是病毒性机制或大笔营销资金,而是用户留存率。开发出吸引用户回头的产品至关重要。 Facebook平台存在“40 – 20 – 10”留存法则。数字表示的是日留存率、周留存率和月留存率,如果你想让产品的DAU超过100万,那么日留存率应该大于40%,周留存率和月留存率分别大于20%和10%。

留存是 AARRR 模型中重要的环节之一,只有做好了留存,才能保障新用户在注册后不会白白流失。这就好像一个不断漏水的篮子,如果不去修补底下的裂缝,而只顾着往里倒水,是很难获得持续的增长的。

4).获取收入

实现收入是每个平台生存的根本,因此找到适合自己的商业模式至关重要。根据不同的业务模式,获取收入的方式也不同:媒体类平台依靠广告变现,游戏类依靠用户付费,电商类通过收取佣金或卖家付费的方式等,而在企业服务领域LTV: CAC大于3,才能有效良性增长。

5).病毒传播

通过模型前四个阶段的优化分析,从不稳定用户、活跃用户再到最终的忠实用户,将获客做最大的留存和转化,培养为企业的忠实用户,通过社交口碑传播可以给企业带来高效的收益。

在获客成本高昂的今天,社交传播可以为企业带来更优质的用户群,更低的获客成本。

2.转化分析模型

转化率是持续经营的核心,因此我也用较大篇幅来详细解读。转化分析常用的工具是转化漏斗,简称漏斗(funnel)。新用户在注册流程中不断流失,最终形成一个类似漏斗的形状。用户行为数据分析的过程中,我们不仅看最终的转化率,也关心转化的每一步的转化率。

1).如何科学的构建漏斗

以往我们会通过产品和运营的经验去构建漏斗,但这个漏斗是否具有代表性,优化这个漏斗对于整体转化率的提升有多大作用,心里没有底气,这时我们可以通过用户流向分析去了解用户的主流路径。

图:用户流向分析

用户流向分析,非常直观,但需要分析人员有一定的经验和判断能力。为了解决这个问题,数极客研发了智能路径分析功能,只需要选择转化目标后,一键就能分析出用户转化的主流路径。将创建漏斗的效率缩短到了几秒钟。

图:智能转化分析

2).漏斗对比分析法

转化分析仅用普通的漏斗是不够的,需要分析影响转化的细节因素,能否进行细分和对比分析非常关键。例如:转化漏斗按用户来源渠道对比,可以掌握不同渠道的转化差异用于优化渠道; 而按用户设备对比,则可以了解不同设备的用户的转化差异(例如:一款价格较高的产品,从下单到支付转化率,使用iphone的用户比android的用户明显要高)。

图:漏斗对比分析

3).漏斗与用户流向结合分析法

一般的转化漏斗只有主干流程,而没有每个步骤流入流出的详细信息,当我们在分析用户注册转化时,如果能知道没有转化到下一步的用户去了哪,我们就能更有效的规划好用户的转化路径。例如下图中的转化路径,没有进入第二步的用户,有88%是直接离开了,而还有10%的用户是注册用户选择直接登录,只有2%的用户绕过了落地页去网站首页了; 而没有从第二步转化至第三步的用户100%都离开了。这是比较典型的封闭式落地页,因此只需要优化第三步的转化率即可提升整体转化率。

4).微转化行为分析法

很多行为分析产品只能分析到功能层级和事件层级的转化,但在用户交互细节分析方面存在严重的缺失, 比如:在上图的漏斗中我们分析出最后一步是影响转化的关键,但最后一步是注册表单,因此对于填写表单的细节行为分析就至关重要, 这种行为我们称为微转化。

例如:填写表单所花费的时长,填写但没有提交表单的用户在填哪个字段时流失,表单字段空白率等表单填写行为。

图:表单填写转化漏斗

图:表单填写时长

通过上述表单填写的微转化分析,用户从开始填写到注册成功转化率达85%,而流量到填写只有8%,可以得出影响转化的最大泄漏点就是填写率,那么如何提高填写率就是我们提升注册转化的核心。有效的内容和精准的渠道是影响填写的核心因素,渠道因素我们在获客分析中已经讲过,这就引出我们微转化分析的第4种工具:用户注意力分析。

5).用户注意力分析法

用户在页面上的点击、浏览、在页面元素上的停留时长、滚动屏幕等用户与页面内容的交互行为,这些都代表用户对产品要展示的信息的关注程度,是否能吸引用户的眼球。

业务数据可以可视化,那么行为数据如何可视化呢? 数极客把上述行为转化成了分屏触达率热图、链接点击图、页面点击图、浏览热图、注意力热图这5种热图,通过5种热图的交叉分析,可以有效的分析出用户最关注的内容。

图:注意力热图

只有能掌握微转化的交互行为分析,才能更有效的提高转化率。而一切不能有效提高平台转化率的分析工具都在浪费企业的人力和时间资源,这也是众多企业没有从用户行为分析中获益的根本原因。

3.精细化运营模型

以前做运营只能针对全体用户,如果要针对部分目标客户做精准运营行为。

图:用户分群画像

例如:当我们希望对某个地区使用iphone的注册但三天不活跃或未形成交易转化的用户进行精准营销时,需要运营人员、产品人员、技术人员 全体配合去调取数据、制定运营规则,其中涉及到大量人力和时间投入。而新一代的用户行为分析可以采用用户分群、用户画像、自定义用户活跃和留存行为,精准的定位用户,从而实现精细化运营。

图:创建用户分群

4.定性分析模型

用户体验是企业的头等大事,在产品设计、用户研究、研发、运营、营销、客户服务等众多环节,都需要掌握用户的真实体验过程。但如何优化用户体验向来是内部争议较多,主要原因还是难以具体和形象的描述。通过行为分析分现异常用户行为时,能否重现用户使用你的产品时的具体场景,这对于优化产品的体验至关重要。

以前我在淘宝时,用户体验部门会通过邀请用户到公司进行访谈,做可用性实验的方式来进行体验优化,但这种方式需要化费比较多的时间和费用投入,样本不一定具有代表性。为了解决这个难题,数极客研发了用户行为录屏工具,无需邀请用户到公司实地录制节省成本,直观高效的以视频形式还原用户的真实操作,使得企业各岗位均能掌握用户体验一手信息,帮助产品研发提高用户体验。

图:用户行为录屏播放界面

总结:通过AAARRR模型分析用户生命周期全程; 通过转化率分析模型 提高产品转化率; 通过精细化运营 提高运营有效性; 通过定性分析方法 优化用户体验; 如果以上4方面都做好了,就一定可以通过用户行为分析实现业务增长。

五、用户行为分析的未来方向是什么?

有很多人问我,为什么已经有几家做用户行为分析的公司了,你还要创办数极客? 我认为数据分析的目标是应用分析结果优化经营效率,而国内外主要的分析工具,还只停留在分析层面,对于如何高效的应用还有很大的空间。因此数极客除了要在分析层面做得更专业和更有效,还要在应用层面实现新的突破。数据分析结果反映的问题主要是两类:运营(含营销)和产品。所以需要针对这两类问题提供针对性的解决方案。

1.运营的自动化

我们前面讲了,通过用户行为分析系统可以实现精细化运营,但具体应用还需要人工制定运营和营销策略,通过产品、研发开发才能应用,而且当策略改变时,需要重新开发相应的工具,这也占用了很多时间,影响运营与营销效率。数极客研发了会员营销系统和自动化运营工具,运营与营销人员直接设置规则,系统根据规则自动将精准的活动信息推送给符合条件的用户,直接提高运营人员工作效率,运营人员可以将工作重心转移到策划而不是浪费太量时间在重复执行,自动化运营可为企业节约大量运营成本。

图:创建自动化运营规则

2.产品、运营(营销)方面的科学决策

用户行为数据分析,往往是在行为发生之后进行分析,而产品、运营都是通过经验,拍脑袋进行决策,一旦决策失误就会造成难以挽回的结果。因此如果能在产品、运营方案上线前,通过用户分流A/B测试进行小范围验证,选择其中最优的方案发布,这样就可以大大提高决策的科学性。

Google每年通过运行数万次A/B测试优化产品、运营,为公司带来了100亿美元的收益。

A/B测试的方法非常有效,但国内互联网公司应用不普遍,主要和应用A/B测试的复杂性有关,

数极客拥有完整的A/B测试工具,业务人员可以在网站和APP上自助使用可视化试验编辑工具,创建并运行试验,通过自动解读测试报告,使得A/B测试门槛大大降低。

图:网站端可视化编辑试验工具

3.分析的自动化

用户行为分析有一定专业性,不仅需要掌握不同的分析方法,还要熟悉业务,结合业务才能给出有价值的分析结果。 如果能像360安全卫士一样,只需要加载SDK,就能自动诊断和分析,并给出解决方案,这是数据分析的未来方向,数极客在这方面也有积极的尝试,并有了初步成果,目前拥有数据自动预警、自动报表等功能。

用户行为分析是一门科学,善于获取数据、分析数据、应用数据,是每个人做好工作的基本功,每家企业都应该加强对用户行为分析大数据的应用,从数据中找出规律,用数据驱动企业增长。

数极客是国内新一代用户行为分析平台,是增长黑客必备的大数据分析工具,支持APP数据分析和网站分析,独创了6大转化率分析模型,是用户行为分析领域首家应用定量分析与定性分析方法的数据分析产品,并且基于用户行为分析系统,提供了会员营销系统和A/B测试工具两大数据智能应用解决方案,使得企业可以快速的实现数据驱动增长。

本文由数极客CEO谢荣生原创,欢迎转载,转载请保留全文和作者信息。

1条大神的评论

  • avatar
    访客 2022-10-03 下午 06:18:23

    ,则需要纠正一些事情。 4.2 假设检验 假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结

发表评论